
Tips for a faster workflow in Linux
(version 0.1)

A. Ridolfi1

1Max-Planck-Institut für Radioastronomie MPIfR, Auf dem Hügel 69, D-53121 Bonn, Germany

1 Looping over files in bash

Very often you will have to loop some particular operation on a bunch of similar files. In this
example, I will fold all the .dat files (PRESTO de-dispersed time series) with prepfold, at once:

> for f in ∗.dat; do prepfold −noxwin −timing ephemeris.par ${f}; done

Using this syntax, I also defined my own function ”loop”, in my .bashrc, this way:

function loop() { for file in $2; do $1 $file; done ; }

In this way, the previous command would be equivalently run like this:

> loop ”prepfold −noxwin −timing ephemeris.par” ”∗.dat”

2 The .inputrc file

In addition to the famous .bahsrc file, there is another file in your home directory that can be
very useful to customize your interaction with the terminal. This is the .inputrc file.
My personal .inputrc looks like this:

arrow up
”\e[A”:history−search−backward
arrow down
”\e[B”:history−search−forward

This will allow me to scroll back through my command history, with an ”autocompletion” function.
For instance, let’s imagine I used the following commands, in the following order:

> echo ”Ciao”
> echo ”Sono”
> echo ”Alessandro”
> emacs myfile.txt
> yes ”ciao sono ale”

After, this, if I type:

> e

and then I press the [UP-ARROW] key on my keyboard, the terminal will first suggest me:

> emacs myfile.txt

Pressing [UP-ARROW] again, I will get:

> echo ”Alessandro”

and again:

1

> echo ”Sono”

If I type:

> y

and then [UP-ARROW], then I will get:

> yes ”ciao sono ale”

I guess there are many more customizations you can set with the .inputrc. It’s up to you to look
for them!

3 Fast, passwordless logins

I want to be able to connect via ssh to a frequently used server without needing to type in the
password every time. It may seem a tiny amount of time saved but, believe me, when you have
to open 5-6 terminals and have to type in the password each time, it can be annoying. So, here is
how to save time. In the following example, I am working on my workstation, called ryzen, where
I am the user alex. From this machine, I want to login as ridolfi to a server called portal.
Schematizing:

alex@ryzen −−> NO PASSWORD −−> ridolfi@portal

To do so:

1. As user alex on the machine ryzen, type:

ssh−keygen −t rsa

2. This commands generates a public key. Find it by typing:

3. As user alex on the machine ryzen, type:

[alex@ryzen]> cat ˜/.ssh/id rsa.pub

You will get an output similar to this, but most likely longer:

ssh−rsa AAAAB3NzaC1yc2EAAAABIwAAAQEArB2U//
9rppXz3b+X4iGYcB/AFygOr3duiagHxJVSFPar/
RBmf6mEaTCT1ZOyJclX/VyHHHH== alex@ryzen

Copy this string.

4. Now log into portal as ridolfi:

> ssh ridolfi@portal

and type in your password as usual. Open the file authorized keys in your /.ssh folder
with a text editor, for example emacs:

ridolfi@portal> emacs ˜/.ssh/authorized keys

and paste the key at the end of the file. Save it and logout.

2

From now on, by doing:

alex@ryzen> ssh ridolfi@portal

you will be able to login without being asked the password!

4 SSH through multiple computers

Very often I need to connect to a computer which is visible only from a server that interconnects
with the rest of the internet. As a practical example, I need to work on the computer miraculix,
which is only accessible from the server portal: From now on, by doing:

me −−−> portal −−−> miraculix

Now, I would like to access miraculix with a single command, and not doing a first ssh to portal

and another ssh to miraculix. The syntax to do such a thing is:

> ssh −X −t ridolfi@portal ssh −X −t ridolfi@miraculix

If needed, I will be asked for the password(s) (but you can avoid this by using the passwordless
logins, see Section 3), but then I will directly be in miraculix.

5 Rsync via intermediate server

Sometimes I want to transfer some files from a computer that is accessible only via an intermediate
server. For example, I want to copy files located in a directory called data in the computer
miraculix. The latter can be seen only after logging into the server portal. The command rsync

allows me to do so, by using the option ”-e”:

> rsync −e ”ssh alex@portal ssh” alex@miraculix:/data ./

6 Screen

The linux command screen can be considered the equivalent of a VNC session, but on a terminal,
rather than on a graphical interface. With screen, you can launch processes or work on a machine,
disconnect, and re-connect later to easily resume your work. This is very good, for example, if
you have to run some heavy code that takes hours to finish. You can launch the code from your
office from inside a screen, go home, have your dinner, and check the progress from your place by
simply attaching to that screen. You can also create as many screens as you want,for multiple work
sessions. How to use it? Here are some basic commands.

1. Create a new screen.

> screen −S my screen

The option -S is followed by the name of the new screen I want to create. After creating a
screen, I am immediately inside the screen itself. Here I can launch my process. I can then
disconnect from the screen by typing CTRL+A CTRL+D.

2. List the existing screens.

3

> screen −ls

There are screens on:
698.test screen (Detached)
711.my screen (Detached)

The existing screens are 698.test screen and 711.my screen The prefix number is added
automatically to the name I gave.

3. Attach to an existing screen.

> screen −x 711.my screen

This way I will ”connect” (or ”attach”) to the existing screen and I will be able to resume
my work there. Obviously, you must be logged into the machine where I created the screen,
to be able to attach to it.

7 Managing processes in background

Sometimes it happens that I am editing a file on emacs but then I need to quickly check something
on the terminal. Instead of quitting emacs and re-opening the file, I can just put emacs into
background. This is done by typing CTRL+Z from emacs (or from whatever program you are
using).
When I put a process into background, its execution is halted. That means that, if that process
was doing some operations, these will be stopped. To keep the process in the background, but
allowing it to run anyways, I can type:

> bg

To bring the process back to the foreground, thus being able to interact with it, I will instead use
the command:

> fg

I can put more than a process to background, by by typing CTRL+Z from each of them. To see
which programs are currently in background, I use:

> jobs
[1] Stopped emacs ciao
[2]− Stopped top
[3]+ Stopped less .bash profile

Each program is identified by a number on the left (1, 2, 3) and its status is reported. ”Stopped”
means that its execution is halted. The identifiers are used to specify which process you want to
control with bg and fg:

> fg 3

8 Executable python scripts

When I write a python code, I don’t like to run it by invoking python:

4

> python my code.py

Too long. Instead, I would like it to behave as an executable, exactly like a normal compiled C
code. To do so, puth the string

#!/usr/bin/env python

at the very first line of your python code. After that, give your code executable permissions.

> chmod a+x my code.py

From now on, I will be able to run the code by simply typing:

> ./my code.py

or, if I add its location in my PATH environment variable, by:

> my code.py

from any directory.

9 Useful linux commands

Here is a collection of useful Linux commands.

1. paste: glue together the columns of different text files.

2. cut: select specific character ranges from the lines of a file.

3. awk: perform sophisticated operations on text files.

4. top / htop: manage your processes.

5. du: check how large are your files and directories.

6. df: check space usage of attached drives.

7. find: look for files.

8. grep: look for words inside text files.

9. cat / more / less: view text files.

10. alias: make shortened versions of your most commonly used commands.

11. wc: count lines, words and characters in a text file.

12. tee: count lines, words and characters in a text file.

5

10 Preventing accidental file deletion

In your .bashrc you can set an environment variable that prevents you from inadvertently re-use
rm commands:

export HISTIGNORE=”∗rm ∗:pwd”

With another one, you can avoid having duplicate entries in your history:

export HISTCONTROL=”ignoredups:ignoredups:ignorespace”

With the command ignorespace you will tell bash to not remember any command that started
with a space. This can be useful if you execute a dangerous command (other than those specified
in HISTIGNORE) that you intentionally want your system to forget.

6

	Looping over files in bash
	The .inputrc file
	Fast, passwordless logins
	SSH through multiple computers
	Rsync via intermediate server
	Screen
	Managing processes in background
	Executable python scripts
	Useful linux commands
	Preventing accidental file deletion

